Blog

Rotomolded cores: New options for sandwich composites | CompositesWorld

Overair heads to flight testing in early 2024, marked by rapid prototype development. 

The eVTOL developer is scouting locations in the U.S. for continued flight testing of its inaugural consumer aircraft, AIR One, through the Agility Prime program. trolley box factory

Rotomolded cores: New options for sandwich composites  | CompositesWorld

Together, the two Spanish companies will outline plans for eVTOL aircraft and operations integration in Europe and Latin America to ensure compatible interaction and maximize aircraft performance.

Following DOA approval, Lilium shifts from the design phase to industrialization, including fuselage matching and joining and a ramp-up of parts production from Tier 1 aerospace suppliers.

The composites-intensive electric aircraft was purchased to meet the airline’s goal of flying a commercial demonstrator by 2026.

The $37 million contract will enable Piasecki to demonstrate its ARES tilt-duct VTOL aircraft and hydrogen fuel cell propulsion technologies.

A new ASTM-standardized test method established in 2022 assesses the compression-loaded damage tolerance of sandwich composites.  

Composites automation specialist increases access to next-gen technologies, including novel AFP systems and unique 3D parts using adaptive molds.

Combined LSAM and five-axis CNC milling capabilities will optimize D-Composites’ production services, flexibility and cut time and cost for composite tooling manufacture.

Evaluation of CFRTP m-pipe through Element’s U.K. facility aims to qualify the system for new operating environments.

Innovative prepreg tooling is highly drapable, capable of forming complex carbon fiber tooling shapes, in addition to reducing through thickness porosity and only requiring one debulk during layup.

Simutence and Engenuity demonstrate a virtual process chain enabling evaluation of process-induced fiber orientations for improved structural simulation and failure load prediction of a composite wing rib.

Composites automation specialist increases access to next-gen technologies, including novel AFP systems and unique 3D parts using adaptive molds.

New support will enable climate-friendly, high-performance and aesthetically pleasing interiors made from ekoa natural fiber composite surfaces and panels.

Holding the new Guinness World Record at 11.98 meters, the 3D-printed composite water taxi used a CEAD Flexbot to print two hulls in less than 12 days.

Torayca-based aerospace components have successfully been repurposed into the Lenovo ThinkPad X1 Carbon Gen 12, highlighting the ongoing application of recycled composites.  

Novel method for fiber-to-fiber recycling of used textiles and a low-cost, cost-effective precursor for carbon fiber manufacture earn 2023 Walter Reiners Foundation Awards.

Components critical to a bobsled’s functionality — push handles, hand grips and seats — were tailored from Windform materials, heightening both performance and safety for athletes’ racing in the 2026 Winter Olympics.

Three prefabricated, low-carbon homes, using Mighty Buildings’ large-format 3D printing and UV-curable resins, will be built in the San Francisco Bay Area as models for future industry developments. 

Composites automation specialist increases access to next-gen technologies, including novel AFP systems and unique 3D parts using adaptive molds.

Plastics and composites manufacturers will benefit from Roctool’s heat and cooling induction for molding processes, with increased technical service support and capability demonstrations on a global scale.

Cygnet Texkimp’s Multi Roll Stack and composite recycling technology catalyze ASCEND program’s mission to optimize aerospace, automotive hydrogen storage and CFRP sustainability.

Holding the new Guinness World Record at 11.98 meters, the 3D-printed composite water taxi used a CEAD Flexbot to print two hulls in less than 12 days.

The novel large-format Flexbot Research XL platform enables TGS to offer 3D printing services, making use of a versatile composite material range.

CW explores key composite developments that have shaped how we see and think about the industry today.

Knowing the fundamentals for reading drawings — including master ply tables, ply definition diagrams and more — lays a foundation for proper composite design evaluation.

As battery electric and fuel cell electric vehicles continue to supplant internal combustion engine vehicles, composite materials are quickly finding adoption to offset a variety of challenges, particularly for battery enclosure and fuel cell development.  

Performing regular maintenance of the layup tool for successful sealing and release is required to reduce the risk of part adherence.

Increasingly, prototype and production-ready smart devices featuring thermoplastic composite cases and other components provide lightweight, optimized sustainable alternatives to metal.

The composite pressure vessel market is fast-growing and now dominated by demand for hydrogen storage.

The burgeoning advanced air mobility (AAM) market promises to introduce a new mode of transport for urban and intercity travelers — particularly those who wish to bypass the traffic congestion endemic to the world’s largest cities. The electric vertical take-off and landing (eVTOL) aircraft serving this market, because they depend on battery-powered propulsion, also depend on high-strength, high-performance composite structures produced at volumes heretofore unseen in the aerospace composites industry. This CW Tech Days will feature subject matter experts exploring the materials, tooling and manufacturing challenges of ramping up composites fabrication operations to efficiently meet the demands of a challenging and promising new marketplace.

Manufacturers often struggle with production anomalies that can be traced back to material deviations. These can cause fluctuations in material flow, cooling, and cure according to environmental influences and/or batch-to-batch variations. Today’s competitive environment demands cost-efficient, error-free production using automated production and stable processes. As industries advance new bio-based, faster reacting and increased recycled content materials and faster processes, how can manufacturers quickly establish and maintain quality control? In-mold dielectric sensors paired with data analytics technology enable manufacturers to: Determine glass transition temperature in real time Monitor material deviations such as resin mix ratio, aging, and batch-to-batch variations throughout the process Predict the influence of deviations or material defects during the process See the progression of curing and demold the part when the desired degree of cure, Tg or crystallinity is achieved Document resin mix ratios using snap-cure resins for qualification and certification of RTM parts Successful case histories with real parts illustrate how sensXPERT sensors, machine learning, and material models monitor, predict, and optimize production to compensate for deviations. This Digital Mold technology has enabled manufacturers to reduce scrap by up to 50% and generated energy savings of up to 23%. Agenda: Dealing with the challenge of material deviations and production anomalies How dielectric sensors work with different composite resins, fibers and processes What is required for installation Case histories of in-mold dielectric sensors and data analytics used to monitor resin mixing ratios and predict potential material deviations How this Digital Mold technology has enabled manufacturers to optimize production, and improve quality and reliability

SolvaLite is a family of new fast cure epoxy systems that — combined with Solvay's proprietary Double Diaphragm Forming technology — allows short cycle times and reproducibility. Agenda:  Application Development Center and capabilities Solutions for high-rate manufacturing for automotive Application examples: battery enclosures and body panels

OEMs around the world are looking for smarter materials to forward-think their products by combining high mechanical performance with lightweight design and long-lasting durability. In this webinar, composite experts from Exel Composites explain the benefits of a unique continuous manufacturing process for composites profiles and tubes called pull-winding. Pull-winding makes it possible to manufacture strong, lightweight and extremely thin-walled composite tubes and profiles that meet both demanding mechanical specifications and aesthetic needs. The possibilities for customizing the profile’s features are almost limitless — and because pull-winding is a continuous process, it is well suited for high volume production with consistent quality. Join the webinar to learn why you should consider pull-wound composites for your product. Agenda: Introducing pull-winding, and how it compares to other composite manufacturing technologies like filament winding or pultrusion What are the benefits of pull-winding and how can it achieve thin-walled profiles? Practical examples of product challenges solved by pull-winding

Composite systems consist of two sub-constituents: woven fibers as the reinforcement element and resin as the matrix. The most commonly used fibers are glass and carbon, which can be processed in plane or satin structures to form woven fabrics. Carbon fibers, in particular, are known for their high strength/weight properties. Thermoset resins, such as epoxies and polyurethanes, are used in more demanding applications due to their high physical-mechanical properties. However, composites manufacturers still face the challenge of designing the right cure cycles and repairing out-of-shelf-life parts. To address these issues, Alpha Technologies proposes using the encapsulated sample rheometer (premier ESR) to determine the viscoelastic properties of thermosets. Premier ESR generates repeatable and reproducible analytical data and can measure a broad range of viscosity values, making it ideal for resins such as low viscous uncured prepreg or neat resins as well as highly viscous cured prepregs. During testing, before cure, cure and after cure properties can be detected without removing the material from the test chamber. Moreover, ESR can run a broad range of tests, from isothermal and non-isothermal cures to advanced techniques such as large amplitude oscillatory shear tests. During this webinar, Alpha Technologies will be presenting some of the selected studies that were completed on epoxy prepreg systems utilizing ESR and how it solves many issues in a fast and effective way. It will highlight the advantages of this technique that were proven with the work of several researchers. Moreover, Alpha Technologies will display part of these interesting findings using the correlations between the viscoelastic properties such as G’ and mechanical properties such as short beam shear strength (SBS).

Surface preparation is a critical step in composite structure bonding and plays a major role in determining the final bonding performance. Solvay has developed FusePly, a breakthrough technology that offers the potential to build reliable and robust bonded composite parts through the creation of covalently-bonded structures at bondline interface. FusePly technology meets the manufacturing challenges faced by aircraft builders and industrial bonding users looking for improved performance, buildrates and lightweighting. In this webinar, you will discover FusePly's key benefits as well as processing and data. Agenda: Surface preparation challenges for composite bonding FusePly technology overview Properties and performance data

The annual Conference on Composites, Materials, and Structures (also known as the Cocoa Beach Conference) is the preeminent export controlled and ITAR restricted forum in the United States to review and discuss advances in materials for extreme environments. The Conference started in the 1970s as a small informal gathering for government and industry to share information on programs and state-of-the-art technology. Attendance has grown to nearly 500 people while preserving this same objective to share needs and trends in high-temperature and extreme environment materials, and the latest information on advanced materials and manufacturing processes. The five-day conference program includes two to three parallel sessions per day on topics including thermal protection materials, ceramic matrix composites, carbon-carbon materials, ballistic technologies, hypersonics, and gas turbine engines. Attendees are engineers, scientists, managers, and operational personnel from the turbine engine, aviation, missiles and space, and protective equipment communities. These communities include the Navy, Air Force, Army, MDA, NASA, DARPA, FAA, DOE, engine manufacturers, missile and aircraft manufacturers, commercial space companies, and material and component suppliers. The Conference will be held in St. Augustine again for 2024! Participation is limited to U.S. Citizens and U.S. Permanent Residents only with an active DD2345 certification.

The 48th International Conference & Exposition on Advanced Ceramics & Composites (ICACC 2024) will be held from Jan. 28–Feb. 2, 2024, in Daytona Beach, Fla. It is a great honor to chair this conference, which has a strong history of being one of the best international meetings on advanced structural and functional ceramics, composites, and other emerging ceramic materials and technologies.

Venue ONLY ON-SITE @AZL Hub in Aachen Building Part 3B, 4th Floor Campus Boulevard 30 52074 Aachen Time: January 31st, 2024 | 11:00-16:00h (CET) This first constitutive session will shape the future of the workgroup. ✓ Insights into solutions for e.g. circularity, recycling, sustainability, end of life etc. ✓ Interactive exchange along the value chain to tackle these challenges: Share your input in the “World Café” workshop session! ✓ Are you a solution provider? Take your chance and present your solution approach in a short 5-minute pitch. Get in touch with Alexander.  

The Transformative Vertical Flight (TVF) 2024 meeting will take place Feb. 6–8, 2024 in Santa Clara, California, in the heart of Silicon Valley and will feature more than 100 speakers on important progress on vertical takeoff and landing (VTOL) aircraft and technology. 

The Program of this Summit consists of a range of 12 high-level lectures by 14 invited speakers only. Topics are composite related innovations in Automotive & Transport, Space & Aerospace, Advanced Materials, and Process Engineering, as well as Challenging Applications in other markets like Architecture, Construction, Sports, Energy, Marine & more.

JEC World in Paris is the only trade show that unites the global composite industry: an indication of the industry’s commitment to an international platform where users can find a full spectrum of processes, new materials, and composite solutions.

Thousands of people visit our Supplier Guide every day to source equipment and materials. Get in front of them with a free company profile.

Initial demonstration in furniture shows properties two to nine times higher than plywood, OOA molding for uniquely shaped components.

The composite tubes white paper explores some of the considerations for specifying composite tubes, such as mechanical properties, maintenance requirements and more.

Foundational research discusses the current carbon fiber recycling landscape in Utah, and evaluates potential strategies and policies that could enhance this sustainable practice in the region.

In its latest white paper, Exel navigates the fire, smoke and toxicity (FST) considerations and complexities that can influence composites design.

New white paper authored by Eike Langkabel, Sebastian de Nardo, and Jens Bockhoff, examines the best resin formulations for composites used in automotive part production, both structural parts and body panels.

Tension control plays a vital role in composites manufacturing in order to achieve automated processing, continuous processing, reduced scrap, increased product quality, and more, says a new white paper released by The Montalvo Corp.

Online industry event in spring 2024 will feature six presentations covering sustainability in the composites industry.

Austrian research institute Wood K plus makes 95% silicon carbide ceramics more sustainable (>85% bio/recycled content), enables 3D shapes via extrusion, injection molding and 3D printing.

Thermoplastic polymer resin was designed to tackle distinctive industry challenges of large-scale 3D printing while also assisting with sustainability initiatives.

The MB9, representing a combination of high performance and eco-conscious materials use, will be commercially available in time for the 2024 sailing season.

For 42 months, the Aitiip Technology Center will coordinate the EU-funded project to design a new range of intermediate materials, such as pellets or resin-impregnated carbon fibers, which will be used to manufacture more sustainable final products.

Co-located R&D and production advance OOA thermosets, thermoplastics, welding, recycling and digital technologies for faster processing and certification of lighter, more sustainable composites.

Explore the cutting-edge composites industry, as experts delve into the materials, tooling, and manufacturing hurdles of meeting the demands of the promising advanced air mobility (AAM) market. Join us at CW Tech Days to unlock the future of efficient composites fabrication operations.

CW’s editors are tracking the latest trends and developments in tooling, from the basics to new developments. This collection, presented by Composites One, features four recent CW stories that detail a range of tooling technologies, processes and materials.

In the Automated Composites Knowledge Center, CGTech brings you vital information about all things automated composites.

CompositesWorld’s CW Tech Days: Infrastructure event offers a series of expert presentations on composite materials, processes and applications that should and will be considered for use in the infrastructure and construction markets.

The composites industry is increasingly recognizing the imperative of sustainability in its operations. As demand for lightweight and durable materials rises across various sectors, such as automotive, aerospace, and construction, there is a growing awareness of the environmental impact associated with traditional composite manufacturing processes.

This CW Tech Days event will explore the technologies, materials, and strategies that can help composites manufacturers become more sustainable.

During CW Tech Days: Thermoplastics for Large Structures, experts explored the materials and processing technologies that are enabling the transition to large-part manufacturing.

Closed mold processes offer many advantages over open molding. This knowledge center details the basics of closed mold methods and the products and tools essential to producing a part correctly.

CompositesWorld’s CW Tech Days: Infrastructure event offers a series of expert presentations on composite materials, processes and applications that should and will be considered for use in the infrastructure and construction markets.

Explore the cutting-edge composites industry, as experts delve into the materials, tooling, and manufacturing hurdles of meeting the demands of the promising advanced air mobility (AAM) market. Join us at CW Tech Days to unlock the future of efficient composites fabrication operations.

Thermoplastics for Large Structures, experts explored the materials and processing technologies that are enabling the transition to large-part manufacturing.

MVP's Automated Equipment: Revolutionizing Composites Part Production Through Filament Winding within CompositesWorld's CompositesWorld Collections Knowledge Center

Composites One Offers Manufacturing Efficiencies with Aerovac Kitting Solutions within CompositesWorld's CompositesWorld Collections Knowledge Center

A report on the demand for hydrogen as an energy source and the role composites might play in the transport and storage of hydrogen.

This collection features detail the current state of the industry and recent success stories across aerospace, automotive and rail applications.

This collection details the basics, challenges, and future of thermoplastic composites technology, with particular emphasis on their use for commercial aerospace primary structures.

This collection features recent CW stories that detail a range of tooling technologies, processes and materials.

Permanent or removable, these hollow thermoplastic cores broaden industry offerings.  

Persico SpA uses rotomolding to build both structural and soluble thermoplastic cores for sandwich-panel composites. The lightweight, hollow cores (above, left) are strong, having already survived 10-bar molding pressure in high-pressure resin-transfer molding (HP-RTM) presses and 5 bar autoclave processes. To date, the company has either applied carbon fiber/epoxy prepreg over the cores and autoclave cured them, or has laid braided carbon fabrics over the cores, then resin-infused the components via HP-RTM. A recently molded core is shown at bottom right, prior to sprue trimming. A molded component, at top right shows the carbon composite skins have been cured over the core. Source (all images): Persico SpA

One of the most interesting cores that researchers have rotomolded to date (see inset below) is of polyetheretherketone (PEEK). This stiff, high-temperature, aromatic thermoplastic’s melt temperature (343°C) is significantly higher than that of most conventional rotomolding resins. Success is said to be due to the efficiency of the electrical heating systems embedded in the company’s SMART tool system (photo on left), which quickly achieves the temperatures required.

Cores in common commodity thermoplastics

Persico researchers have already rotomolded cores in a variety of thermoplastics, as shown in the photo selection above.

Rotomolded soluable cores more easily removed

Persico has explored the use of water-soluble polymers, which can be dissolved away in hot water after the skins are cured. In the two images at right, carbon fiber/epoxy prepreg was wrapped around an EVOH core (near right), the sandwich was autoclave cured, and then the core was soaked away leaving behind a hollow ball (far right).

As interest in composites grows, so do opportunities for companies with innovative materials and/or process technologies that boost production efficiency, reduce part mass and cost while improving performance and broadening product design options. Such is the case with a new rotomolded core technology from Italian plastic machinery OEM Persico SpA (Nembro, Italy), now in trials with several European automakers. 

Persico’s process produces symmetrical and asymmetrical hollow cores in a variety of smooth or textured finishes from a range of thermoplastics for use in sandwich-panel constructions. The hollow cores, of course, are lighter and use less material and, therefore, could be priced more competitively than solid cores of the same material. Rotomolding involves injecting or placing a measured charge (shot) of thermoplastic powder in an enclosed, heated mold, which is then rotated simultaneously around two perpendicular axes. The heat and two-axis motion cause the material to melt, flow and coat interior mold walls at a uniform thickness, forming a hollow component. The mold surface is then cooled while rotation continues, causing material to shrink away from the tool (which aids demolding) while retaining the shape. Although rotomolding is slower than other plastics forming processes, cycling 15 minutes to hours for very large parts, it offers precise thickness control and can produce multiple parts per molding cycle in family tools as well as truly large parts, such as multi-thousand-gallon underground tanks, at low tooling costs. For these reasons, the process presents the opportunity to create cores in materials, geometries and sizes that would be difficult or impractical using other processes. 

Persico’s core concept resulted from the convergence of three factors. First, the company has developed competencies over the past three decades in several “pivotal” aspects of the rotomolding process, says Alberto Carrara, sales manager for the company’s Industrial business unit. “We know how to rotomold a broad selection of polymers — far more than our customers typically need or ask about,” he explains. “In fact, in our lab we keep searching for additional polymers that might be suitable for rotomolding but that aren’t used in the process today. We work with a local partner who helps us prepare powders by grinding granules [pellets].”

Background work on polymers that are atypical of rotomolding has helped guide development of tooling, machinery and processing enhancements, he notes. “Second, based on our proprietary SMART rotomolding machinery controls and on vacuum-assisted rotomolding, we can maintain tight control of local thicknesses on plastic parts during the molding cycle,” Carrara adds. Third, an identified market need also helped. That, Persico found in the automotive segment. 

The auto industry is an important customer base for Persico’s tooling, presses and automated lines used to mold lightweight reinforced thermoplastic (LWRT) and direct-long fiber thermoplastic (D-LFT) composites. Rotomolding is an older but smaller segment of the company’s customer base, which purchases Persico tools and equipment to produce parts for tractors, commercial trucks and other ground transport segments. Cores presented a means to expand rotomolding’s market impact. “We thought there might be a way to introduce our automotive customers to our rotomolding capabilities,” recalls Ottorino Ori, sales manager, Persico Industrial. “Automotive suppliers kept contacting us and asking for an affordable core to use in highly complex 3D parts. As we explored further, the market seemed to be waiting for solutions concerning two kinds of thermoplastic cores — soluble and structural.” That prompted the team to scout for automotive rotomolding opportunities a year ago, which in turn led to work on composite cores.  

The team ran experiments, tested a variety of raw materials and announced preliminary results at the SPE ACCE (Novi, MI, US) in September 2016. Based on positive response from that conference, the company says it is devoting a significant portion of its 2017 R&D budget to mature the technology, with an emphasis on identifying projects and partners to test soluble and structural cores. 

To date, Persico’s structural composites research has focused on a variety of cores combined with autoclave-cured carbon fiber/epoxy prepreg skins or braided carbon fabrics infused with epoxy via high-pressure resin transfer molding (HP-RTM). That work might soon pay off: automakers in Italy and the UK are said to be looking for applications for the technology on two platforms.

To date, the company says it has successfully molded cores from conventional rotomolding resins: polypropylene (PP), polyamide 6 (PA 6), polyvinyl chloride (PVC), liquid and powdered crosslinked polyethylene (XLPE), linear polyethylene (PE), polyethylene terephthalate (PET), polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS) and the weatherable polymer, acrylic styrene acrylonitrile (ASA). For a greener core, they have rotomolded post-industrial recycled PE, bio-based polyolefins and several water-soluble polymers. 

Persico’s most recent and surprising material is polyetheretherketone (PEEK). Although this very stiff, high-performance aromatic thermoplastic’s melt temperature (343°C) is significantly higher than that of most conventional rotomolding resins, Carrara says Persico’s ability to rotomold it is a function of the efficiency of the electrical heating systems embedded in its SMART tool system, which helps them quickly reach PEEK’s higher temperature. He also credits unique vacuum circuits, which are said to greatly enhance rotomolding of PEEK in powder and micro-pellet forms. Work is underway to optimize processing conditions for PEEK in granular form, and future work might evaluate other high-temperature thermoplastics.

Depending on selection of skin and core materials, the cores can be designed to permanently bond to skins or detach after demolding. Not surprisingly, non-polar olefins offer poor adhesion without surface preparation. On the other hand, powdered PET provides very good adhesion to carbon composites. Similarly, high-gloss cores offer poorer adhesion than cores with textured surfaces. Interestingly, researchers say they’ve seen no correlation between the selected process — at least in terms of autoclave cure vs. HP-RTM — and core adhesion. More study is underway in this area.

So versatile is the technology that there even is the option, when water-soluble polymers are used, to remove cores from skins by dissolving them in hot water. Early work with ethylene vinyl alcohol (EVOH) was found to take up to 48 hours to fully dissolve the cores. However, more recent work, focused on polyvinyl alcohol-polyvinyl acetate (PVOH-PVA), a food/pharmaceutical-grade packaging polymer (Gohsenol, from Nippon Gohsei, Osaka, Japan) has accelerated dissolution times. “More and more we are convinced that an effective combination of soluble plastics and an agile production technique represents a competitive advantage over other methods of producing removable cores in complex shapes,” explains Gaetano Donizetti, sales manager, Persico Industrial. He contends that rotomolded cores can surpass silicone bladders when part shape reaches a certain complexity.

To advance the technology to a pre-commercial phase in 2016, Persico produced a special test tool called a “cuboid” and fitted it to a SMART rotomolding machine. The tool produces rotomolded parts that are 290 mm long by 290 mm wide by 150 mm tall. “We use the cuboid to define the practical limits for our cores, such as maximum and minimum wall thickness, survivable forming pressures and how fast we can dissolve them in water,” adds Donizetti. He notes that when 0.6-kg cuboid cores rotomolded in PVOH-PVA with 2-mm nominal walls were soaked in 40°C water, the cores completely dissolved in 50 minutes. When soaked in 80°C water, they dissolved in 15 minutes. Although they haven’t tested solubility at higher temperatures yet (that’s a future research project), stopping at 80°C makes sense, because any customer with an RTM heating system will have water available at that temperature.

Ori adds that certain thermoplastic core types can be removed via mechanical or thermal means — via side-access openings, with or without pre-softening and folding the core — although such actions carry the risk of damaging the part. That’s why the team is encouraged by how well PET cores adhere to carbon composite. He also says that thin and flexible PET cores produced via rotomolding or blowmolding are another alternative they will explore in the near term.

This past year, autoclave-cured carbon fiber/epoxy prepreg-wrapped cores survived 5-bar molding pressures. More recent testing of PVOH-PVA cuboid cores draped with dry carbon materials and resin injected in HP-RTM withstood 10-bar pressure without collapsing. The team is continuing to explore the forming pressure limitations of the hollow cores.

Persico has ambitions to explore other options. For example, in-mold chemical foaming is often used with rotomolded olefin polymers. This creates a solid outer skin, while the center and inner skin of the hollow parts are foamed, offering opportunities for modest weight and cost savings, albeit at cycle times two-times longer than normal. Researchers think foaming could be used to produce olefin or polyurethane structural cores with novel thermal and acoustical damping properties. Another area of interest is use of chopped glass fiber reinforcement for PA6 cores. 

“Rotomolding ... doesn’t suffer severe limitations in terms of size or geometric complexity,” adds Carrara. “However, for small components, there are some constraints in terms of using sharp edges/corners where powdered materials can stick and prevent correct filling of the tool. Also, for large cores, our SMART machines currently have a physical limitation of 2,800-mm diameter for the machine table.”

How will the company bring the technology to market? Ori says Persico is open to all options. The initial approach will be to co-design parts, build tools and test prototypes with a supplier or OEM partner, who eventually would purchase a SMART machine and produce parts. When the technology matures, Persico will make its know-how available and possibly retain responsibility to co-design and produce tools for the process.

Applications aren't as demanding as airframe composites, but requirements are still exacting — passenger safety is key.

There are numerous methods for fabricating composite components. Selection of a method for a particular part, therefore, will depend on the materials, the part design and end-use or application. Here's a guide to selection.

ESE Carbon Co.’s new carbon fiber wheel uses tailored fiber placement and custom presses to minimize waste and improve scalability.

Fast-reacting resins and speedier processes are making economical volume manufacturing possible.

Discussion of the issues in our understanding of thermoplastic composite welded structures and certification of the latest materials and welding technologies for future airframes.

The inaugural CW From the Archives revisits Sara Black’s 2007 story on out-of-autoclave infusion used to fabricate the massive composite upper cargo door for the Airbus A400M military airlifter.

Startup Fited and Brightlands Materials Center have developed a lighter weight, thinner CFRP corrective brace, including pressure sensors made from continuous carbon fibers.

Rotomolded cores: New options for sandwich composites  | CompositesWorld

OEM custom floater CompositesWorld is the source for reliable news and information on what’s happening in fiber-reinforced composites manufacturing. Learn More